Can you suggest real life examples about the motion of a body from the following velocity$-$time graphs ?
$(i)$ A car moving with uniform velocity.
$(ii)$ A freely falling body under the action of gravity.
$(iii)$ A train starts from rest, picks up velocity, moves with uniform velocity for some time and then retards
The following table show os the positon of three persons between $8.00\, am$ to $8.20\, am$.
Time | Position (in $km$) | ||
Person $A$ | Person $B$ | Person $C$ | |
$8.00 \,am$ | $0$ | $0$ | $0$ |
$8.05 \,am$ | $4$ | $5$ | $10$ |
$8.10\, am$ | $13$ | $10$ | $19$ |
$8.15 \,am$ | $20$ | $15$ | $24$ |
$8.20\, am$ | $25$ | $20$ | $27$ |
$(i)$ Who is moving with constant speed ?
$(ii)$ Who has travelled maximum distance between $8.00\, am$ to $8.05\, am$ ?
$(iii)$ Calculate the average speed of person $'A^{\prime}$ in $k m h^{-1}$
The velocity-time graph (Fig.) shows the motion of a cyclist. Find $(i)$ its acceleration $(ii)$ its velocity and $(iii)$ the distance covered by the cyclist in $15\,\sec $.
What is the difference between uniform motion in a straight line and circular motion ?
What is the nature of the displacement$-$time graph of a body moving with constant velocity ?
Explain the differences between the two graphs.