Calculate the $pH$ of the solution in which $0.2 \,M\, NH _{4} Cl$ and $0.1 \,M\, NH _{3}$ are present. The $pK _{ b }$ of ammonia solution is $4.75$
$NH _{3}+ H _{2} O \rightleftharpoons NH _{4}^{+}+ OH ^{-}$
The ionization constant of $NH _{3}$
$K_{ b }=$ antilog $\left(- pK _{ b }\right)$ i.e.
$K_{b}=10^{-4.75}=1.77 \times 10^{-5} \,M$
$NH _{3}+ H _{2} O \rightleftharpoons NH _{4}^{+}+ OH ^{-}$
Initial concentration $(M)$
$0.10$ $0.20$ $0$
Change to reach equilibrium $(M)$
$-x$ $+x$ $+x$
At equilibrium $(M)$
$0.10-x$ $0.20+x$ $x$
$K_{ b }=\left[ NH _{4}^{+}\right]\left[ OH ^{-}\right] /\left[ NH _{3}\right]$
$=(0.20+x)(x) /(0.1-x)=1.77 \times 10^{-5}$
As $K_{ b }$ is small, we can neglect $x$ in comparison to $0.1 \,M$ and $0.2\, M$. Thus,
$\left[ OH ^{-}\right]= x =0.88 \times 10^{-5}$
Therefore, $\left[ H ^{+}\right]=1.12 \times 10^{-9}$
$pH =-\log \left[ H ^{+}\right]=8.95$
The solubility of a salt of weak acid $( A B )$ at $pH 3$ is $Y \times 10^{-3} mol L ^{-1}$. The value of $Y$ is
. . . . . (Given that the value of solubility product of $A B \left( K _{ sp }\right)=2 \times 10^{-10}$ and the value of ionization constant of $H B \left( K _{ a }\right)=1 \times 10^{-8}$ )
A weak acid $HA$ has a $K_a$ of $1.00 \times 10^{-5} $. If $0.100\,mol$ of this acid is dissolved in one litre of water the percentage of acid dissociated at equilibrium is closest to.....$\%$
What is the $pH$ of $0.1\,M\,N{H_3}$
The hydrogen ion concentration of $0.1\,N$ solution of $C{H_3}COOH,$ which is $30\%$ dissociated, is
Which solution contains maximum number of ${H^ + }$ ion