Below are four equations in $x$. Assume that $0 < r < 4$. Which of the following equations has the largest solution for $x$ ?

  • [KVPY 2011]
  • A

    $5\left(1+\frac{r}{\pi}\right)^x=9$

  • B

    $5\left(1+\frac{r}{17}\right)^x=9$

  • C

    $5(1+2 r)^x=9$

  • D

    $5\left(1+\frac{1}{r}\right)^x=9$

Similar Questions

Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]

If $x, y$ are real numbers such that $3^{(x / y)+1}-3^{(x / y)-1}=24$ then the value of $(x+y) /(x-y)$ is

  • [KVPY 2010]

How many positive real numbers $x$ satisfy the equation $x^3-3|x|+2=0$ ?

  • [KVPY 2009]

Let $\alpha, \beta(\alpha>\beta)$ be the roots of the quadratic equation $x ^{2}- x -4=0$. If $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$, then $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ is equal to$......$

  • [JEE MAIN 2022]

Let $\alpha ,\beta $ be the roots of ${x^2} + (3 - \lambda )x - \lambda = 0.$ The value of $\lambda $ for which ${\alpha ^2} + {\beta ^2}$ is minimum, is