ball is thrown from a point with a speed $‘v_0$’ at an elevation angle of $\theta $ . From the same point and at the same instant, a person starts running with a constant speed $\frac{{'{v_0}'}}{2}$ to catch the ball. Will the person be able to catch the ball? If yes, what should be the angle of projection $\theta $ ?

  • A

    No

  • B

    Yes, $30^o$

  • C

    Yes, $60^o$

  • D

    Yes, $45^o$

Similar Questions

The vector sum of two forces is perpendicular to their vector differences. In that case, the forces

A body of mass $m$ is suspended from a string of length $l$. What is minimum horizontal velocity that should be given to the body in its lowest position so that it may complete one full revolution in the vertical plane with the point of suspension as the centre of the circle

A particle is moving eastwards with velocity of $5\,m/s$. In $10 \,sec$ the velocity changes to $5 \,m/s$ northwards. The average acceleration in this time is

A body of mass $1 \,kg$ is projected from ground at an angle $30^{\circ}$ with horizontal on a level ground at a speed $50 \,m / s$. The magnitude of change in momentum of the body during its flight is ....... $kg ms ^{-1}$ $\left(g=10 \,m / s ^2\right)$

A particle does uniform circular motion in a horizontal plane. The radius of the circle is $20$ cm. The centripetal force acting on the particle is $10\, N$. It's kinetic energy is ........ $J$