At  $25\,^o C$, the dissociation constant of a base $BOH$ is $1.0 \times {10^{ - 12}}$. The concentration of Hydroxyl ions in $0.01\, M$ aqueous solution of the base would be

  • [AIPMT 2005]
  • A

    $2.0 \times {10^{ - 6}}\,mol\,{L^{ - 1}}$

  • B

    $1.0 \times {10^{ - 5}}\,mol\;{L^{ - 1}}$

  • C

    $1.0 \times {10^{ - 6}}\,mol\,{L^{ - 1}}$

  • D

    $1.0 \times {10^{ - 7}}\,mol\;{L^{ - 1}}$

Similar Questions

The $pH $ of a $0.01\,M$ solution of acetic acid having degree of dissociation $12.5\%$ is

The $pH$ of $0.004 \,M$ hydrazine solution is $9.7 .$ Calculate its ionization constant $K_{ b }$ and $pK _{ b }$

Calculate the degree of ionization of $0.05 \,M$ acetic acid if its $p K_{ a }$ value is $4.74$ 

How is the degree of dissociation affected when its solution also contains $(a)$ $0.01 \,M$ $(b)$ $0.1 \,M$ in $HCl$ ?

$p{K_a}$ of a weak acid is defined as

Values of dissociation constant, $K_a$ are given as follows

      Acid       $K_a$
      $HCN$       $6.2\times 10^{-10}$
      $HF$       $7.2\times 10^{-4}$
      $HNO_2$       $4.0\times 10^{-4}$

Correct order of increasing base strength of the base $CN^-,F^-$ and $NO_2^-$ will be

  • [JEE MAIN 2013]