Calculate the degree of ionization of $0.05 \,M$ acetic acid if its $p K_{ a }$ value is $4.74$ 

How is the degree of dissociation affected when its solution also contains $(a)$ $0.01 \,M$ $(b)$ $0.1 \,M$ in $HCl$ ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$c=0.05 \,M$

$p K_{a}=4.74$

$p K_{a}=-\log \left(K_{a}\right)$

$K_{a}=1.82 \times 10^{-5}$

$K_{a}=c \alpha^{2}$ $\alpha=\sqrt{\frac{K_{a}}{c}}$

$\alpha=\sqrt{\frac{1.82 \times 10^{-5}}{5 \times 10^{-2}}}=1.908 \times 10^{-2}$

When $HCI$ is added to the solution, the concentration of $H ^{+}$ ions will increase. Therefore, the equilibrium will shift in the backward direction i.e., dissociation of acetic acid will decrease.

Case $I:$ When $0.01 \,M$ $HCl$ is taken.

Let $x$ be the amount of acetic acid dissociated after the addition of $HCl$.

                                    $C{H_3}COOH\quad  \leftrightarrow \quad {H^ + }\quad  + \quad C{H_3}CO{O^ - }$

Initial conc.                      $0.05\,M$                          $0$                       $0$

After dissociation           $0.05-x$                     $0.01+x$          $x$

As the dissociation of a very small amount of acetic acid will take place, the values i.e., $0.05-x$ and $0.01+x$ can be taken as $0.05$ and $0.01$ respectively.

$K_{a}=\frac{\left[ CH _{3} COO ^{-}\right]\left[ H ^{+}\right]}{\left[ CH _{3} COOH \right]}$

$\therefore K_{a}=\frac{(0.01) x}{0.05}$

$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.01}$

$x=1.82 \times 10^{-3} \times 0.05 \,M$

Now, $\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken }}$

$=\frac{1.82 \times 10^{-3} \times 0.05}{0.05}$

$=1.82 \times 10^{-3}$

Case $II:$ When $0.1 \,M$ $HCl$ is taken.

Let the amount of acetic acid dissociated in this case be $X$. As we have done in the first case, the concentrations of various species involved in the reaction are:

$\left[ CH _{3} COOH \right]=0.05-X ; 0.05\, M$

$\left[ CH _{3} COO ^{-}\right]=X$

$\left[ H ^{+}\right]=0.1+X ; 0.1 \,M$

$K_{a}=\frac{\left[ CH _{3} COO ^{-}\right]\left[ H ^{+}\right]}{\left[ CH _{3} COOH \right]}$

$\therefore K_{a}=\frac{(0.1) X}{0.05}$

$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.1}$

$x=1.82 \times 10^{-4} \times 0.05 \,M$

Now,  $\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken }}$

$=\frac{1.82 \times 10^{-4} \times 0.05}{0.05}$

$=1.82 \times 10^{-4}$

Similar Questions

A weak base $MOH$ of $0.1\, N$ concentration shows a $pH$ value of $9$. What is the  percentage degree of ionisation of the base ? ......$\%$

What concentration of $Ac^-$ ions will reduce $H_3O^+$ ion to $2 × 10^{-4}\ M$ in $0.40\ M$ solution of $HAc$ ? $K_a (HAc) = 1.8 × 10^{-5}$ ?

What is the $pH$ of $0.001 \,M$ aniline solution? The ionization constant of aniline can be taken from Table . Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

Base $K _{ b }$
Dimethylamine, $\left( CH _{3}\right)_{2} NH$ $5.4 \times 10^{-4}$
Triethylamine, $\left( C _{2} H _{5}\right)_{3} N$ $6.45 \times 10^{-5}$
Ammonia, $NH _{3}$ or $NH _{4} OH$ $1.77 \times 10^{-5}$
Quinine, ( $A$ plant product) $1.10 \times 10^{-6}$
Pyridine, $C _{5} H _{5} N$ $1.77 \times 10^{-9}$
Aniline, $C _{6} H _{5} NH _{2}$ $4.27 \times 10^{-10}$
Urea, $CO \left( NH _{2}\right)_{2}$ $1.3 \times 10^{-14}$

It has been found that the $pH$ of a $0.01$ $M$ solution of an organic acid is $4.15 .$ Calculate the concentration of the anion, the ionization constant of the acid and its $p{K_a}$

Derive ${K_w} = {K_a} \times {K_b}$ and ${K_w} = p{K_a} \times p{K_b}$ for weak base $B$ and its conjugate acid ${B{H^ + }}$.