Assertion $(A):$ A spherical equipotential surface is not possible for a point charge.

Reason $(R):$ A spherical equipotential surface is possible inside a spherical capacitor.

  • [AIIMS 2015]
  • A

    If both Assertion and Reason are true and Reason is correct explanation of Assertion.

  • B

    If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

  • C

    If Assertion is true but Reason is false.

  • D

    If both Assertion and Reason are false.

Similar Questions

Show that the direction of electric field at a given is normal to the equipotential surface passing through that point.

Equipotential surfaces associated with an electric field which is increasing in magnitude along the $x$-direction are

  • [AIIMS 2004]

Given below are two statements: one is labelled a

Assertion $(A)$ and the other is labelled as Reason$(R)$

$Assertion$ $(A)$ : Work done by electric field on moving a positive charge on an equipotential surface is always zero.

$Reason$ $(R)$ : Electric lines of forces are always perpendicular to equipotential surfaces.

In the light of the above statements, choose the most appropriate answer from the options given below 

  • [JEE MAIN 2024]

A uniform electric field pointing in positive $x$-direction exists in a region. Let $A$ be the origin, $B$ be the point on the $x$-axis at $x = + 1$ $cm$ and $C$ be the point on the $y$-axis at $y = + 1\,cm$. Then the potentials at the points $A$, $B$ and $C$ satisfy

  • [IIT 2001]

A uniformly charged solid sphere of radius $R$ has potential $V_0$ (measured with respect to $\infty$) on its surface. For this sphere the equipotential surfaces with potentials $\frac{{3{V_0}}}{2},\;\frac{{5{V_0}}}{4},\;\frac{{3{V_0}}}{4}$ and $\frac{{{V_0}}}{4}$ have rasius $R_1,R_2,R_3$ and $R_4$ respectively. Then

  • [JEE MAIN 2015]