Assertion : If the distance between parallel plates of a capacitor is halved and dielectric constant is three times, then the capacitance becomes $6\,times$.
Reason : Capacity of the capacitor does not depend upon the nature of the material.
If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
If the Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
The potential gradient at which the dielectric of a condenser just gets punctured is called
A parallel plate condenser with a dielectric of dielectric constant $K$ between the plates has a capacity $C$ and is charged to a potential $V\ volt$. The dielectric slab is slowly removed from between the plates and then reinserted. The net work done by the system in this process is
A spherical capacitor has an inner sphere of radius $12 \;cm$ and an outer sphere of radius $13\; cm .$ The outer sphere is earthed and the inner sphere is given a charge of $2.5\; \mu \,C .$ The space between the concentric spheres is filled with a liquid of dielectric constant $32$
$(a)$ Determine the capacitance of the capacitor.
$(b)$ What is the potential of the inner sphere?
$(c)$ Compare the capacitance of this capacitor with that of an isolated sphere of radius $12 \;cm .$ Explain why the latter is much smaller.
The radii of the inner and outer spheres of a condenser are $9\,cm$ and $10\,cm$ respectively. If the dielectric constant of the medium between the two spheres is $6$ and charge on the inner sphere is $18 \times {10^{ - 9}}\;coulomb$, then the potential of inner sphere will be, if the outer sphere is earthed........$volts$
A parallel plate capacitor of area ' $A$ ' plate separation ' $d$ ' is filled with two dielectrics as shown. What is the capacitance of the arrangement?