Assertion : Cobalt $-60$ is useful in cancer therapy.
Reason : Cobalt $-60$ is a source of $\gamma - $ radiations capable of killing cancerous cells
If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
If the Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
Assertion : Radioactive nuclei emit ${\beta ^ - }$ particles.
Reason : Electrons exist inside the nucleus
Beta rays emitted by a radioactive material are
The isotope ${ }_5^{12} \mathrm{~B}$ having a mass $12.014 \mathrm{u}$ undergoes $\beta$-decay to ${ }_6^{12} \mathrm{C} .{ }_6^{12 .}$ has an excited state of the nucleus $\left({ }_6^{12} \mathrm{C}^*\right)$ at $4.041 \mathrm{MeV}$ above its ground state. If ${ }_5^{12} \mathrm{~F}$ decays to ${ }_6^{12} \mathrm{C}^*$, the maximum kinetic energy of the $\beta$-particle in units of $\mathrm{MeV}$ is ( $1 \mathrm{u}=931.5 \mathrm{MeV} / c^2$, where $c$ is the speed of light in vacuum).
Assertion: ${}_Z{X^A}$ undergoes a $2\alpha -$ decays, $2\beta -$ decays and $2\gamma - $ decays and the daughter product is ${}_{Z - 2}{X^{A - 8}}$
Reason : In $\alpha - $decays the mass number decreases by $4$ and atomic number decreases by $2$. In $2\beta - $ decays the mass number remains unchanged, but atomic number increases by $1$ only.
In a material medium, when a positron meets an electron both the particles annihilate leading to the emission of two gamma ray photons. This process forms the basis of an important diagnostic procedure called