Assertion : A proton and an alpha particle having the same kinetic energy are moving in circular paths in a uniform magnetic field. The radii of their circular paths will be equal.
Reason : Any two charged particles having equal kinetic energies and entering a region of uniform magnetic field $\overrightarrow B $ in a direction perpendicular to $\overrightarrow B $, will describe circular trajectories of equal radii.
If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
If Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
Maximum kinetic energy of the positive ion in the cyclotron is
A charged particle is released from rest in a region of uniform electric and magnetic fields which are parallel to each other. The particle will move on a
Two protons $A$ and $B$ move parallel to the $x$-axis in opposite directions with equal speeds $v$. At the instant shown, the ratio of magnetic force and electric force acting on the proton $A$ is ( $c=$ speed of light in vacuum)
An electron enters with a velocity ${\rm{\vec v}},{{\rm{v}}_0}{\rm{\hat i}}$ into a cubical region (faces parallel to coordinate planes) in which there are uniform electric and magnetic fields. The orbit of the electron is found to spiral down inside the cube in plane parallel to the $\mathrm{xy}$ - plane. Suggest a configuration of fields $\mathrm{E}$ and $\mathrm{B}$ that can lead to it.
A proton (mass $m$ and charge $+e$) and an $\alpha - $particle (mass $4m$ and charge $+2e$) are projected with the same kinetic energy at right angles to the uniform magnetic field. Which one of the following statements will be true