આકૃતિમાં દર્શાવ્યા પ્રમાણે, આંતર ત્રિજ્યા $a$ અને બાહ્ય ત્રિજ્યા $b$ વાળા ગોળીય વાહક કવચના કેન્દ્રમાં બિંદુવત વીજભાર $Q$ મૂકેલ છે. વીજભાર $Q$ ને લીધે ત્રણ ભિન્ન વિસ્તાર $I, II$ અને $III$ માં વીજ ક્ષેત્ર $..............$ હશે. $\text { (I :r } r < a \text {, II : } a < r < b, \text { III: } r > b \text { ) }$
$E _{ I }=0, E _{ II }=0, E _{ III } \neq 0$
$E _{ I } \neq 0, E _{ II }=0, E _{ III } \neq 0$
$E _{ I } \neq 0, E _{ II }=0, E _{ III }=0$
$E _{ I }=0, E _{ II }=0, E _{ III }=0$
સુવાહકની અંદરના ભાગમાં સ્થિત વિધુતક્ષેત્ર શૂન્ય હોય છે તે સમજાવો.
$R$ અને $2R$ ત્રિજ્યા ધરાવતા બે અલગ કરેલા ધાત્વીય ગોળાઓને એવી રીતે વિદ્યુતભારિત કરવામાં આવે છે કે જેથી તરો સમાન વિદ્યુતભાર ઘનતા $\sigma$ હોય. આ બંને ગોળાઓને ત્યારબાદ પાતળા સુવાહક તારથી જોડવામાં આવે છે, ધારો કે મોટા ગોળા પરની નવી વિદ્યુતભાર ઘનતા $\sigma^{\prime}$ હોય તો, ગુણોતર $\frac{\sigma^{\prime}}{\sigma}=.......$ થશે.
$R$ અને $2 R$ ત્રિજ્યા ધરાવતા બે ધાતુના ગોળાની પૃષ્ઠવિજભાર ઘનતા $\sigma$ સમાન છે.તે બંનેને સંપર્કમાં લાવવામાં આવે છે અને પછી અલગ કરવામાં આવે છે.તો તેના પર નવી પૃષ્ઠવિજભાર ઘનતા કેટલી થશે?
વિધુતક્ષેત્રમાં બખોલવાળા વાહકને મૂકતાં, બખોલમાં વિધુતક્ષેત્ર શૂન્ય હોય છે તે સમજાવો.
નીચે આપેલા વિધાનો ધ્યાનમાં લો.
વિધાન $I$ : વાહકની સપાટી ઉપર અને અંદરના ભાગમાં વિદ્યુતસ્થિતિમાન અચળ હોય છે.
વિધાન $II :$ વિજભારિત સુવાહકની તરત જ બહારના ભાગ આગળ દરેક બિંદુએ વિદ્યુતક્ષેત્ર સપાટીને લંબરૂપે હોય છે.
ઉપરોક્ત વિધાનોનાં સંદર્ભમાં, નીચે આપેલા વિકલ્પોમાંથી સૌથી સાચો વિકલ્પ પસંદ કરો :