Angle between equipotential surface and lines of force is.......$^o$
$0$
$180$
$90$
$45$
In the circuit shown, a potential difference of $30\, V$ is applied across $AB$ . The potential difference between the points $M$ and $N$ is....$V$
A parallel plate capacitor has plates with area $A$ and separation $d$ . A battery charges the plates to a potential difference $V_0$. The battery is then disconnected and a dielectric slab of thickness $d $ is introduced. The ratio of energy stored in the capacitor before and after the slab is introduced is
Two condensers $C_1$ and $C_2$ in a circuit are joined as shown in figure. The potential of point $A$ is $V_1$ and that of $B$ is $V_2$. The potential of point $D$ will be
A parallel plate capacitor of area $A$, plate separation $d$ and capacitance $C$ is filled with three different dielectric materials having dielectric constant $K_1,K_2$ and $K_3$ as shown. If a single dielectric material is to be used to have the same capacitance $C$ in this capacitor, then its dielectric constant $K$ is given by: ($A =$ Area of plates)
The plates of a parallel plate capacitor are charged up to $100\,volt$. A $2\,mm$ thick plate is inserted between the plates, then to maintain the same potential difference, the distance between the capacitor plates is increased by $1.6\,mm$. The dielectric constant of the plate is