An object is taken to height $2 R$ above the surface of earth, the increase in potential energy is $[R$ is radius of earth]
$\frac{m g R}{2}$
$\frac{m g R}{3}$
$\frac{2 m g R}{3}$
$2 m g R$
In order to make the effective acceleration due to gravity equal to zero at the equator, the angular velocity of rotation of the earth about its axis should be $(g = 10\,m{s^{ - 2}}$ and radius of earth is $6400 \,kms)$
The radii of two planets are respectively $R_1$ and $R_2$ and their densities are respectively ${\rho _1}$ and ${\rho _2}$. The ratio of the accelerations due to gravity at their surfaces is
The orbital angular momentum of a satellite revolving at a distance $r$ from the centre is $L.$ If the distance is increased to $4r$ then the new angular momentum will be
Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre ofthe planet for $r \ge $ radius of the planet. Plots $1$ and $2$ coincide for $r \ge {R_2}$ and plots $3$ and $4$ coincide for $r \ge {R_4}$ . The sequence of the planets in the descending order of their densities is
Two spherical bodies of mass $M$ and $5M$ and radii $R$ and $2R$ respectively are released in free space with initial separation between their centres equal to $12\,R$. If they attract each other due to gravitational force only, then the distance covered by the smaller body just before collision is