An electron in a hydrogen atom revolves around its nucleus with a speed of $6.76 \times 10^6\,ms ^{-1}$ in an orbit of radius $0.52\,\mathring A$. The magnetic field produced at the nucleus of the hydrogen atom is $......T$.
$40$
$50$
$30$
$20$
A coil of $50\, turns$ and $4\,cm$ radius carries $2\,A$ current then magnetic field at its centre is......$mT$
In the figure, find out the magnetic field at $B$ (Given $I =2.5 \;A,r =5\, cm )$
A long insulated copper wire is closely wound as a spiral of ' $N$ ' turns. The spiral has inner radius ' $a$ ' and outer radius ' $b$ '. The spiral lies in the $X-Y$ plane and a steady current ' $I$ ' flows through the wire. The $Z$-component of the magnetic field at the center of the spiral is
In hydrogen atom, an electron is revolving in the orbit of radius $0.53\,{\mathop A\limits^o }$ with $6.6 \times {10^{15}}$ $rotations/second$. Magnetic field produced at the centre of the orbit is.......$wb/{m^2}$
A thin rod is bent in the shape of a small circle of radius $'r'$. If the charge per unit length of the rod is $'\sigma ',$ and if the circle is rotated about its axis at the rate of $'n'$ rotation per second, the magnetic induction at a point on the axis at a large distance $'y'$ from the centre is