An electron and a proton enter region of uniform magnetic field in a direction at right angles to the field with the same kinetic energy. They describe circular paths of radius ${r_e}$ and ${r_p}$ respectively. Then

  • A

    ${r_e} = {r_p}$

  • B

    ${r_e} < {r_p}$

  • C

    ${r_e} > {r_p}$

  • D

    ${r_e}$ may be less than or greater than ${r_p}$ depending on the direction of the magnetic field

Similar Questions

The electron in the beam of a television tube move horizontally from south to north. The vertical component of the earth's magnetic field points down. The electron is deflected towards

A charged particle carrying charge $1\,\mu C$  is moving with velocity $(2 \hat{ i }+3 \hat{ j }+4 \hat{ k })\, ms ^{-1} .$ If an external magnetic field of $(5 \hat{ i }+3 \hat{ j }-6 \hat{ k }) \times 10^{-3}\, T$ exists in the region where the particle is moving then the force on the particle is $\overline{ F } \times 10^{-9} N$. The vector $\overrightarrow{ F }$ is :

  • [JEE MAIN 2020]

An electron enters the space between the plates of a charged capacitor as shown. The charge density on the plate is $\sigma $. Electric intensity in the space between the plates is $E$. A uniform magnetic field $B$ also exists in that space perpendicular to the direction of $E$. The electron moves perpendicular to both $\vec E$ and $\vec B$ without any change in direction. The time taken by the electron to travel a distance $\ell $ is the space is

An electron gun is placed inside a long solenoid of radius $\mathrm{R}$ on its axis. The solenoid has $\mathrm{n}$ turns/length and carries a current $I$. The electron gun shoots an electron along the radius of the solenoid with speed $v$. If the electron does not hit the surface of the solenoid, maximum possible value of ${v}$ is (all symbols have their standard meaning)

  • [JEE MAIN 2020]

An electron and a proton enter a magnetic field perpendicularly. Both have same kinetic energy. Which of the following is true