An electron, a proton and an alpha particle having the same kinetic energy are moving in circular orbits of radii $r_e,r_p$ and ${r_\alpha }$ respectively in a uniform magnetic field $B$. The relation between $r_e,r_p$ and $\;{r_\alpha }$ is
$r_e < r_p$ $=$ $\;{r_\alpha }$
$r_e < r_p$ $ <$ $\;{r_\alpha }$
$r_e < $ $\;{r_\alpha }$ $< r_p$
$r_e > r_p$ $=$ $\;{r_\alpha }$
A charged particle of specific charge $\alpha$ is released from origin at time $t = 0$ with velocity $\vec V = {V_o}\hat i + {V_o}\hat j$ in magnetic field $\vec B = {B_o}\hat i$ . The coordinates of the particle at time $t = \frac{\pi }{{{B_o}\alpha }}$ are (specific charge $\alpha = \,q/m$)
In toroid magnetic field on axis will be the radius $=0.5\, cm ,$ current $=1.5\, A ,$ turns $=250,$ permeability $=700$ (in Tesla)
An electron, moving in a uniform magnetic field of induction of intensity $\vec B,$ has its radius directly proportional to
$A$ particle having charge $q$ enters a region of uniform magnetic field $\vec B$ (directed inwards) and is deflected a distance $x$ after travelling a distance $y$. The magnitude of the momentum of the particle is:
A proton and an $\alpha$ -particle, having kinetic energies $K _{ p }$ and $K _{\alpha},$ respectively, enter into $a$ magnetic field at right angles.
The ratio of the radii of trajectory of proton to that of $\alpha$ -particle is $2: 1 .$ The ratio of $K _{ p }: K _{\alpha}$ is :