An electric field of $1500\, V / m$ and a magnetic field of $0.40\, weber / meter^2$ act on a moving electron. The minimum uniform speed along a straight line the electron could have is
$1.6 \times 10^{15}\, m / s$
$6 \times 10^{-16}\, m / s$
$3.75 \times 10^{3}\, m / s$
$3.75 \times 10^{2}\, m / s$
A particle of mass $m$ and charge $q$ is thrown from origin at $t = 0$ with velocity $2\hat{i}$ + $3\hat{j}$ + $4\hat{k}$ units in a region with uniform magnetic field $\vec B$ = $2\hat{i}$ units. After time $t =\frac{{\pi m}}{{qB}}$ , an electric field is switched on such that particle moves on a straight line with constant speed. $\vec E$ may be
A particle having charge of $10\,\mu C$ and $1\,\mu g$ mass moves along circular path of $10\, cm$ radius in the effect of uniform magnetic field of $0.1\, T$. When charge is at point $'P'$, a uniform electric field applied in the region so charge moves tangentially with constant speed. The value of electric field is......$V/m$
A proton and an $\alpha -$ particle (with their masses in the ratio of $1 : 4$ and charges in the ratio of $1:2$ are accelerated from rest through a potential difference $V$. If a uniform magnetic field $(B)$ is set up perpendicular to their velocities, the ratio of the radii $r_p : r_{\alpha }$ of the circular paths described by them will be
An electron is projected with velocity $v_0$ in a uniform electric field $E$ perpendicular to the field. Again it is projetced with velocity $v_0$ perpendicular to a uniform magnetic field $B/$ If $r_1$ is initial radius of curvature just after entering in the electric field and $r_2$ is initial radius of curvature just after entering in magnetic field then the ratio $r_1:r_2$ is equal to
An electron is moving on a circular path of radius $r$ with speed $v$ in a transverse magnetic field $B$. $e/m$ for it will be