An arrangement of three parallel straight wires placed perpendicular to plane of paper carrying same current $'I'$ along the same direction as shown in figure. Magnitude of force per unit length on the middle wire $'B'$ is given by
$\frac{{2{\mu _0}{I^2}}}{{\pi d}}$
$\frac{{\sqrt 2 {\mu _0}{I^2}}}{{\pi d}}$
$\;\frac{{{\mu _0}{I^2}}}{{\sqrt 2 \pi d}}$
$\;\frac{{{\mu _0}{I^2}}}{{2\pi d}}$
A straight conductor carries a current of $5A$. An electron travelling with a speed of $5 \times {10^6}\,m{s^{ - 1}}$ parallel to the wire at a distance of $0.1\,m$ from the conductor, experiences a force of
Two long current carrying thin wires, both with current $I$, are held by insulating threads oflength $L$ and are in equilibrium as shown in the figure, with threads making an angle '$\theta$' with the vertical. If wires have mass $\lambda$ per unit length then the value of $l$ is
($g =$ gravitational acceleration)
A triangular shaped wire carrying $10 A$ current is placed in a uniform magnetic field of $0.5\,T$, as shown in figure. The magnetic force on segment $CD$ is $....N$ $($ Given $BC = CD = BD =5\,cm )$.
Write magnetic force equation on current carrying element ${\rm{I\vec l}}$ inside magnetic field ${\rm{\vec B}}$ Write law to determine direction of magnetic field.
A large current carrying plate is kept along $y-z$ plane with $k$ $amp$ current per unit length in the $+ve$ $y$ direction. Find the net force on the semi cricular current carrying looplying in the $x-y$ plane. Radius of loop is $R$, current is $i$ and centre is at $(d,0, 0)$ where $(d > R)$