An alternating current of frequency $200\,rad/sec$ and peak value $1\,A$ as shown in the figure, is applied to the primary of a transformer. If the coefficient of mutual induction between the primary and the secondary is $1.5\, H$, the voltage induced in the secondary will be.....$V$

144-4

  • A

    $300 $

  • B

    $191$

  • C

    $220 $

  • D

    $4471 $

Similar Questions

Two coils, $X$ and $Y$, are kept in close vicinity of each other. When a varying current, $I(t)$, flows through coil $X$, the induced emf $(V(t))$ in coil $Y$, varies in the manner shown here. The variation of $I(t)$; with time, can then be represented by the graph labelled as graph

  • [JEE MAIN 2013]

Two coils $A$ and $B$ having turns $300$ and $600$ respectively are placed near each other, on passing a current of $3.0$ ampere in $A$, the flux linked with A is $1.2 \times {10^{ - 4}}\,weber$ and with $B$ it is $9.0 \times {10^{ - 5}}\,weber$. The mutual inductance of the system is

Two coils of self inductance ${L_1}$ and ${L_2}$ are placed closer to each other so that total flux in one coil is completely linked with other. If $M$ is mutual inductance between them, then $M$ is

Two circular coils have their centres at the same point. The mutual inductance between them will be maximum when their axes

Explain mutual induction and derive equation of mutual $\mathrm{emf}$.