Actinium $231$, ${}^{231}A{c_{89}}$, emit in succession two $\beta  - $particles, four alphas, one $\beta  $ and one alpha plus several $\gamma $ rays. What is the resultant isotope

  • [AIIMS 2011]
  • A

    $^{221}A{u_{79}}$

  • B

    $^{211}A{u_{79}}$

  • C

    $^{221}P{b_{82}}$

  • D

    $^{211}P{b_{82}}$

Similar Questions

The $\beta$-decay process, discovered around $1900$ , is basically the decay of a neutron ( $n$ ), In the laboratory, a proton ( $p$ ) and an electron ( $e ^{-}$) are observed as the decay products of the neutron. therefore, considering the decay of a neutron as a tro-body dcay process, it was predicted theoretically that thekinetic energy of the electron should be a constant. But experimentally, it was observed that the electron kinetic energy has a continuous spectrum. Considering a three-body decay process, i.e. $n \rightarrow p+ e ^{-}+\bar{v}_{ e }$, around $1930,$ Pauli explained the observed electron energy spectrum. Assuming the anti-neutrino $\left(\bar{v}_{ e }\right)$ to be massless and possessing negligible energy, and neutron to be at rest, momentum and energy conservation principles are applied. From this calculation, the maximum kinetic energy of the lectron is $0.8 \times 10^6 eV$. The kinetic energy carried by the proton is only the recoil energy.

$1.$ What is the maximum energy of the anti-neutrino?

$(A)$ Zero

$(B)$ Much less than $0.8 \times 10^6 \ eV$

$(C)$ Nearly $0.8 \times 10^6 \ eV$

$(D)$ Much larger than $0.8 \times 10^6 \ eV$

$2.$ If the anti-neutrino had a mass of $3 eV / c ^2$ (where $c$ is the speed of light) instead of zero mass, what should be the range of the kinetic energy, $K$, of the electron?

$(A)$ $0 \leq K \leq 0.8 \times 10^6 \ eV$

$(B)$ $3.0 eV \leq K \leq 0.8 \times 10^6 \ eV$

$(C)$ $3.0 eV \leq K < 0.8 \times 10^6 \ eV$

$(D)$ $0 \leq K < 0.8 \times 10^6 \ eV$

Give the answer question $1$ and $2.$

  • [IIT 2012]

A neutron strikes a ${ }_{92} U ^{235}$ nucleus and as a result ${ }_{38} Kr ^{93}$ and ${ }_{56} Ba ^{140}$ are produced with

A certain radioactive material $_ZX^A$ starts emitting $\alpha $ and $\beta $ particles successively such that the end product is $_{Z-3}Y^{A-8}$. The number of $\beta $ and $\alpha $ particles emitted are

Suppose a ${ }_{88}^{226} Ra$ nucleus at rest and in ground state undergoes $\alpha$-decay to a ${ }_{56}^{22} Rn$ nucleus in its excited state. The kinetic energy of the emitted $\alpha$ particle is found to be $4.44 MeV$. ${ }_{86}^{22} Rn$ nucleus then goes to its ground state by $\gamma$-decay. The energy of the emitted $\gamma$-photon is. . . . . . . .$keV$,

[Given: atomic mass of ${ }_{ gs }^{226} Ra =226.005 u$, atomic mass of ${ }_{56}^{22} Rn =222.000 u$, atomic mass of $\alpha$ particle $=4.000 u , 1 u =931 MeV / c ^2, c$ is speed of the light $]$

  • [IIT 2019]

In a material medium, when a positron meets an electron both the particles annihilate leading to the emission of two gamma ray photons. This process forms the basis of an important diagnostic procedure called

  • [AIIMS 2003]