A weak acid, $HA,$ has a $K_a$ of $1.00 \times 10^{-5}.$ If $0.100 \,mol$ of this acid is dissolved in one litreof water, the percentage of acid dissociated at equilibrium is closest to.....$\%$
$1$
$99.9$
$0.1$
$99$
If the dissociation constant of an acid $HA$ is $1 \times {10^{ - 5}},$ the $pH$ of a $ 0.1$ molar solution of the acid will be approximately
Write characteristic and uses of weak base equilibrium constant ${K_b}$.
The first ionization constant of $H _{2} S$ is $9.1 \times 10^{-8}$. Calculate the concentration of $HS ^{-}$ ion in its $0.1 \,M$ solution. How will this concentration be affected if the solution is $0.1\, M$ in $HCl$ also? If the second dissociation constant of $H _{2} S$ is $1.2 \times 10^{-13}$, calculate the concentration of $S^{2-}$ under both conditions.
$50\ ml$ of $0.02\ M$ $NaHSO_4$ is mixed with $50$ $ml$ of $0.02\ M\ Na_2SO_4$. Calculate $pH$ of the resulting solution.$[pKa_2 (H_2SO_4) = 2]$
The molar conductivity of a solution of a weak acid $HX (0.01\ M )$ is $10$ times smaller than the molar conductivity of a solution of a weak acid $HY (0.10 \ M )$. If $\lambda_{ X }^0 \approx \lambda_{ Y ^{-}}^0$, the difference in their $pK _{ a }$ values, $pK _{ a }( HX )- pK _{ a }( HY )$, is (consider degree of ionization of both acids to be $\ll 1$ )