A uniform spring of force constant $k$ is cut into two pieces, the lengths of which are in the ratio $1 : 2$. The ratio of the force constants of the shorter and the longer pieces is

  • A

    $1:3$

  • B

    $1:2$

  • C

    $2:3$

  • D

    $2:1$

Similar Questions

A particle executes $SHM$ with amplitude of $20 \,cm$ and time period is $12\, sec$.  What is the minimum time required for it to move between two points $10\, cm$ on  either side of the mean position ..... $\sec$ ?

A particle of mass $m$ is attached to three identical springs $A, B$ and $C$ each of force constant $ k$ a shown in figure. If the particle of mass $m$ is pushed slightly against the spring $A$ and released then the time period of oscillations is

To make the frequency double of a spring oscillator, we have to

When a body of mass $1.0\, kg$ is suspended from a certain light spring hanging vertically, its length increases by $5\, cm$. By suspending $2.0\, kg$ block to the spring and if the block is pulled through $10\, cm$ and released the maximum velocity in it in $m/s$ is : (Acceleration due to gravity $ = 10\,m/{s^2})$

Block $A$ is hanging from a vertical spring and it is at rest. Block $'B'$ strikes the block $'A'$ with velocity $v$ and stick to it. Then the velocity $v$ for which the spring just attains natural length is: