A uniform rod of length $L$ has a mass per unit length $\lambda$ and area of cross-section $A$. If the Young's modulus of the rod is $Y$. Then elongation in the rod due to its own weight is ...........

  • A

    $\frac{2 \lambda g L^2}{A Y}$

  • B

    $\frac{\lambda g L^2}{2 A Y}$

  • C

    $\frac{\lambda g L^2}{4 A Y}$

  • D

    $\frac{\lambda g L^2}{A Y}$

Similar Questions

$A$ rod of length $1000\, mm$ and coefficient of linear expansion $a = 10^{-4}$ per degree is placed symmetrically between fixed walls separated by $1001\, mm$. The Young’s modulus of the rod is $10^{11} N/m^2$. If the temperature is increased by $20^o C$, then the stress developed in the rod is ........... $MPa$

When a certain weight is suspended from a long uniform wire, its length increases by one  $cm$. If the same weight is suspended from another wire of the same material and length  but having a diameter half of the first one, the increase in length will be ......... $cm$

A wire of area of cross-section $10^{-6}\,m^2$ is increased in length by $0.1\%$. The tension produced is $1000\, N$. The Young's modulus of wire is

A metal rod of cross-sectional area $10^{-4} \,m ^{2}$ is hanging in a chamber kept at $20^{\circ} C$ with a weight attached to its free end. The coefficient of thermal expansion of the rod is $2.5 \times 10^{-6} \,K ^{-1}$ and its Young's modulus is $4 \times 10^{12} \,N / m ^{2}$. When the temperature of the chamber is lowered to $T$, then a weight of $5000 \,N$ needs to be attached to the rod, so that its length is unchanged. Then, $T$ is ............ $^{\circ} C$

  • [KVPY 2019]

Force constant of a spring $(K)$ is synonymous to