A truck of mass $M$ is at rest on frictionless road when a monkey of mass $m$ starts moving on the truck in forward direction.If the truck recoils with a speed $v$ backward on the road, with what velocity is the monkey moving with respect to truck ?
$\left( {1 + \frac{m}{M}} \right)\,v$
$\left( {1 + \frac{M}{m}} \right)\,v$
$\frac{{mV}}{{(M + m)}}$
$\frac{{MV}}{{(m + M)}}$
In the figure shown the velocity of lift is $2\,m / s$ while string is winding on the motor shaft with velocity $2\,m / s$ and block $A$ is moving downwards with a velocity of $2\,m / s$, then find out the velocity of block $B -$
Figure shows a boy on a horizontal platform $A$ on a smooth horizontal surface, holding a rope attached to a box $B$ . Boy pulls the rope with a constant force of $50\ N$ . (boy does not slip over the platform). The combined mass of platform $A$ and boy is $250\ kg$ and that of box $B$ is $500\ kg$ . The velocity of $A$ relative to the box $B$ , $5\ s$ after the boy on $A$ begins to pull the rope, will be ............ $m/s$
An elevator accelerates upwards at a constant rate. A uniform string of length $L$ and mass $m$ supports a small block of mass $M$ that hangs from the ceiling of the elevator. The tension at distance $l$ from the ceiling is $T$ . The acceleration of the elevator is
In the arrangement shown in figure $a _{1}, a _{2}, a _{3}$ and $a _{4}$ are the accelerations of masses $m _{1}, m _{2}, m _{3}$ and $m _{4}$ respectively. Which of the following relation is true for this arrangement?
At a given instant, $A$ is moving with velocity of $5\,\,m/s$ upwards.What is velocity of $B$ at that time