A car $P$ approaching a crossing at a speed of $10\,m/s$ sounds a horn of frequency $700 \,Hz$ when $40\,m$ in front of the crossing. Speed of sound in air is $340\,m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\,m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is ..... $Hz$

818-1100

  • A

    $700$

  • B

    $717$

  • C

    $1000$

  • D

    $679$

Similar Questions

The equation of displacement of two waves are given as ${y_1} = 10\,\sin \,\left( {3\pi t\, + \,\pi /3\,} \right)$ , ${y_2} = 5\,\left( {\sin \,3\pi t + \,\sqrt 3 \,\cos \,3\pi t} \right)$ , then what is the ratio of their amplitude 

A whistle revolves in a circle with an angular speed of $20\, rad/s$ using a string of length $50\, cm$. If the frequency of sound from the whistle is $385\, Hz$, then what is the minimum frequency heard by an observer, which is far away from the centre in the same plane  ..... $Hz$ (speed of sound is $340\, m/s$)

A uniform rope of length $L$ and mass $m_1$ hangs vertically from a rigid support. A block of mass $m_2$ is attached to the free end of the rope. A transverse pulse of wavelength $\lambda _1$ is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is $\lambda _2$. The ratio $\lambda _2/\lambda _1$ is

Two waves represented by

$y_1 = 10\,sin\,(2000\,\pi t + 2x)$

and ${y_2} = 10{\mkern 1mu} \,sin\,{\mkern 1mu} \left( {2000{\mkern 1mu} \pi t + 2x + \frac{\pi }{2}} \right)$ are superposed at any point at a particular instant. The resultant amplitude is ..... $unit$

A string of mass $m$ and length $l$ hangs from ceiling as shown in the figure. Wave in string moves upward. $v_A$ and $v_B$ are the speeds of wave at $A$ and $B$ respectively. Then $v_B$ is