A thin paper cup filled with water does not catch fire when placed over a flame. This is because

  • [KVPY 2014]
  • A

    the water cuts off oxygen supply to the paper cup

  • B

    water is an excellent conductor of heat

  • C

    the paper cup does not become appreciably hotter than the water it contains

  • D

    paper is a poor conductor of heat

Similar Questions

Two metal cubes $A$ and $B$ of same size are arranged as shown in the figure. The extreme ends of the combination are maintained at the indicated temperatures. The arrangement is thermally insulated. The coefficients of thermal conductivity of $A$ and $B$ are $300\;W/m{\;^o}C$ and $200\;W/m{\;^o}C$, respectively. After steady state is reached, the temperature of the interface will be...... $^oC$

  • [IIT 1996]

For the figure shown, when arc $ACD$ and $ADB$ are made of same material, the heat carried between $A$ and $B$ is $H$ . If $ADB$ is replaced with another material, the heat carried becomes $2H$ . If the temperatures at $A$ and $B$ are fixed at $T_1$ and $T_2$ , what is the ratio of the new conductivity to the old one of $ADB$

A cylindrical rod with one end in a steam chamber and the other end in ice results in melting of $0.1$ gm of ice per second. If the rod is replaced by another with half the length and double the radius of the first and if the thermal conductivity of material of second rod is $\frac{1}{4}$ that of first, the rate at which ice melts in $gm/\sec $will be

Bottom of a lake is at $0^{\circ} C$ and atmospheric temperature is $-20^{\circ} C$. If $1 cm$ ice is formed on the surface in $24 \,h$, then time taken to form next $1 \,cm$ of ice is ......... $h$

The two ends of a rod of length $L$ and a uniform cross-sectional area $A$ are kept at two temperatures $T_1$ and $T_2 (T_1 > T_2)$. The rate of heat transfer,$\frac{ dQ }{dt}$, through the rod in a steady state is given by

  • [AIIMS 2019]