A 'thermacole' icebox is a cheap and an efficient method for storing small quantities of cooked food in summer in particular. A cubical icebox of side $30 \,cm$ has a thickness of $5.0\; cm .$ If $4.0\; kg$ of ice is put in the box, estimate the amount of ice (in $kg$) remaining after $6 \;h$. The outside temperature is $45\,^{\circ} C ,$ and co-efficient of thermal conductivity of thermacole is $0.01\; J s ^{-1} m ^{-1} K ^{-1} .$ Heat of fuston of water $=335 \times 10^{3}\;J kg ^{-1} $
Side of the given cubical ice box, $s=30 cm =0.3 m$
Thickness of the ice box, $l=5.0 cm =0.05 m$
Mass of ice kept in the ice box, $m=4 kg$
Time gap, $t=6 h =6 \times 60 \times 60 s$
Outside temperature, $T=45^{\circ} C$
Coefficient of thermal conductivity of thermacole, $K=0.01 J s ^{-1} m ^{-1} K ^{-1}$
Heat of fusion of water, $L=335 \times 10^{3} J kg ^{-1}$ Let
$m$ be the total amount of ice that melts in $6 h$.
The amount of heat lost by the food:
$\theta=\frac{K A(T-0) t}{l}$
Where,
$A=$ Surface area of the box $=6 s^{2}=6 \times(0.3)^{2}=0.54 m ^{3}$
$\theta=\frac{0.01 \times 0.54 \times(45) \times 6 \times 60 \times 60}{0.05}=104976 J$
But $\theta=m^{\prime} L$
$\therefore m^{\prime}=\frac{\theta}{L}$
$=\frac{104976}{335 \times 10^{3}}=0.313 kg$
Mass of ice left $=4-0.313=3.687 kg$
Hence, the amount of ice remaining after $6 h$ is $3.687\, kg .$
$10\, gm$ of ice at $-20°C$ is dropped into a calorimeter containing $10\, gm$ of water at $10°C;$ the specific heat of water is twice that of ice. When equilibrium is reached, the calorimeter will contain
A refrigerator converts $500\,g$ of water at $25\,^oC$ into ice at $-10\,^oC$ in $3\,hours\,40\,minutes$ . The quantity of heat removed per minute is ........ $cal/\min$
(Sp. heat of water $1\,cal/gm$, Specific heat of ice $= 0.5\,cal/g\,^oC$ , letent heat of fusion $= 80\,cal/g$ )
A kettle with $2\, littre$ water at $27\,^oC$ is heated by operating coil heater of power $1\, kW$. The heat is lost to the atmosphere at constant rate $160\, J/sec$, when its lid is open. In how much time will water heated to $77\,^oC$. (specific heat of water $= 4.2\, kJ/kg$) with the lid open ?
The specific heat of a metal at low temperatures varies according to $S = aT^3$ where a is a constant and $T$ is the absolute temperature. The heat energy needed to raise unit mass of the metal from $T = 1 K$ to $T = 2 K$ is
Two rigid boxes containing different ideal gases are placed on a table. Box A contains one mole of nitrogen at temperature $T_0$, while Box contains one mole of helium at temperature $(7/3)$ $T_0$ The boxes are then put into thermal contact with each other, and heat flows between them until the gases reach a common final temperature (ignore the heat capacity of boxes). Then, the final temperature of the gases,$T_f$ in terms of $T_0$ is