A student determined Young's Modulus of elasticity using the formula $Y=\frac{M g L^{3}}{4 b d^{3} \delta} .$ The value of $g$ is taken to be $9.8 \,{m} / {s}^{2}$, without any significant error, his observation are as following.
Physical Quantity | Least count of the Equipment used for measurement | Observed value |
Mass $({M})$ | $1\; {g}$ | $2\; {kg}$ |
Length of bar $(L)$ | $1\; {mm}$ | $1 \;{m}$ |
Breadth of bar $(b)$ | $0.1\; {mm}$ | $4\; {cm}$ |
Thickness of bar $(d)$ | $0.01\; {mm}$ | $0.4 \;{cm}$ |
Depression $(\delta)$ | $0.01\; {mm}$ | $5 \;{mm}$ |
Then the fractional error in the measurement of ${Y}$ is
$0.0083$
$0.0155$
$0.155$
$0.083$
If error in measuring diameter of a circle is $4\%$, the error in radius of the circle would be
A body travels uniformly a distance of $ (13.8 \pm 0.2)\,m$ in a time $(4.0 \pm 0.3)\, s$. The percentage error in velocity is ......... $\%$
While measuring the acceleration due to gravity by a simple pendulum, a student makes a positive error of $1\%$ in the length of the pendulum and a negative error of $3\%$ in the value of time period. His percentage error in the measurement of $g$ by the relation $g = 4{\pi ^2}\left( {l/{T^2}} \right)$ will be ........ $\%$
Write type of error in measurement of physical quantity and explain.
The mean time period of second's pendulum is $2.00s$ and mean absolute error in the time period is $0.05s$. To express maximum estimate of error, the time period should be written as