A square current carrying loop is suspended in a uniform magnetic field acting in the plane of the loop. If the force on one arm of the loop is $\overrightarrow F$ the net force on the remaining three arms of the loop is
$3$$\overrightarrow {F} $
$-$$\;\overrightarrow {\;F} $
$-3$$\overrightarrow {\;F} $
$\overrightarrow {\;F} $
A solenoid $60 \;cm$ long and of radius $4.0\; cm$ has $3$ layers of windings of $300$ turns each. A $2.0 \;cm$ long wire of mass $2.5\; g$ lies inside the solenoid (near its centre) normal to its axis; both the wire and the axis of the solenoid are in the horizontal plane. The wire is connected through two leads parallel to the axis of the solenoid to an external battery which supplies a current of $6.0\; A$ in the wire. What value of current (with appropriate sense of circulation in $A$) in the windings of the solenoid can support the weight of the wire? $g=9.8\; m \,s ^{-2}$
Two long straight parallel wires, carrying (adjustable) current $I_1$ and $I_2$, are kept at a distance $d$ apart. If the force $'F'$ between the two wires is taken as 'positive' when the wires repel each other and 'negative' when the wires attract each other, the graph showing the dependence of $'F'$, on the product $I_1 I_2$, would be
The resultant force on the current loop $PQRS$ due to a long current carrying conductor will be
For the circuit shown in figure, the direction and magnitude of the force on $PQR$ is :-
A conducting circular loop of radius $r$ carries a constant current $i$. It is placed in uniform magnetic field $B$, such that $B$ is perpendicular to the plane of the loop. The net magnetic force acting on the loop is