अभ्यास में, मान लीजिए जब कमानी अतानित अवस्था में है तब पिण्ड की स्थिति $x=0$ है तथा बाएँ से दाएँ की दिशा $x-$ अक्ष की धनात्मक दिशा है । दोलन करते पिण्ड के विस्थापन $x$ को समय के फलन के रूप मे दर्शाइए, जबकि विराम घड़ी को आरंभ $(t=0)$ करते समय पिण्ड,
$(a)$ अपनी माध्य स्थिति,
$(b)$ अधिकतम तानित स्थिति, तथा
$(c)$ अधिकतम संपीडन की स्थिति पर है ।
सरल आवर्त गति के लिए ये फलन एक दूसरे से आवृत्ति में, आयाम में अथवा आरंभिक कला में किस रूप में भिन्न हैं ?
The functions have the same frequency and amplitude, but different initial phases
Distance travelled by the mass sideways, $A=2.0 \,cm$
Force constant of the spring, $k=1200\, N m ^{-1}$
Mass, $m=3 \,kg$
Angular frequency of oscillation:
$\omega=\sqrt{\frac{k}{m}}$
$=\sqrt{\frac{1200}{3}}=\sqrt{400}=20 \,rad s ^{-1}$
When the mass is at the mean position, initial phase is $0 .$
Displacement, $x=A \sin \omega t$
$=2 \sin 20 t$
At the maximum stretched position, the mass is toward the extreme right. Hence, the
initial phase is $\frac{\pi}{2}$
Displacement, $x=A \sin \left(\omega t+\frac{\pi}{2}\right)$
$=2 \sin \left(20 t+\frac{\pi}{2}\right)$
$=2 \cos 20 t$
At the maximum compressed position, the mass is toward the extreme left. Hence, the initial phase is $\frac{3 \pi}{2}$
$x=A \sin \left(\omega t+\frac{3 \pi}{2}\right)$
Displacement,
$=2 \sin \left(20 t+\frac{3 \pi}{2}\right)=-2 \cos 20 t$
The functions have the same frequency $\left(\frac{20}{2 \pi} Hz \right)$ and amplitude $(2 \,cm ),$ but different initial phases $\left(0, \frac{\pi}{2}, \frac{3 \pi}{2}\right)$
किसी स्प्रिंग से लटके $m$ द्रव्यमान का आवर्तकाल $2$ सैकण्ड है तब $4m$ द्रव्यमान का आवर्तकाल .... सैकण्ड होगा
समान स्प्रिंग् नियतांक $k$ वाली दो स्प्रिंगों को श्रेणीक्रम में जोड़ा जाता है तथा बाद में समान्तर क्रम में जोड़ते हैं। यदि इनसे $m$द्रव्यमान का पिण्ड लटका है तो उनकी ऊध्र्वाधर दोलनों की आवृत्तियों का अनुपात होगा
दो द्रव्यमान जिनके मान ${m_1}$एवं ${m_2}$ हैं, एक ही स्प्रिंग से जिसका स्प्रिंग नियतांक $k$ है, लटके हैं। जब दोनों द्रव्यमान सन्तुलन में है तब ${m_1}$ द्रव्यमान को सावधानीपूर्वक हटा लिया जाता है, तब ${m_2}$ की कोणीय आवृत्ति होगी
दो स्प्रिंग जिनके बल नियतांक ${K_1} = 1500\,N/m$ तथा ${K_2} = 3000\,N/m$ है, समान बल से खींची जाती है। तो स्प्रिंगों में संचित स्थितिज ऊर्जाओं का अनुपात होगा
एक स्प्रिंग से जुड़ा हुआ $1 \;kg$ का एक गुटका $1 \;Hz$ की आवृत्ति से एक घर्षणहीन क्षैतिज मेज पर दोलन करता है। इसी तरह की दो समान्तर स्प्रिंगों से एक $8 \;kg$ का गुटका जोड़कर उसी मेज पर दोलन कराते हैं। $8 \;kg$ के गुटके की दोलन आवृत्ति होगी $\dots \; Hz$