A solid conducting sphere of radius $a$ has a net positive charge $2Q$. A conducting spherical shell of inner radius $b$ and outer radius $c$ is concentric with the solid sphere and has a net charge $-Q$. The surface charge density on the inner and outer surfaces of the spherical shell will be
$ - \frac{{2Q}}{{4\pi {b^2}}},\frac{Q}{{4\pi {c^2}}}$
$ - \frac{Q}{{4\pi {b^2}}},\frac{Q}{{4\pi {c^2}}}$
$0,\frac{Q}{{4\pi {c^2}}}$
None of the above
Two concentric spherical shells of radius $R_1$ and $R_2$ have $q_1$ and $q_2$ charge respectively as shown in figure. How much charge will flow through key $k$ when it is closed
Two spheres of radius $R$ and $2R$ having charge $Q$ and $2Q$ respectively are placed far away from each other. How much charge will flow when key $'k'$ is pressed ?
The adjacent diagram shows a charge $+Q$ held on an insulating support $S$ and enclosed by a hollow spherical conductor. $O$ represents the centre of the spherical conductor. and $P$ is a point such that $OP = x $ and $SP = r$ . The electric field at point $P$ will be
Three concentric conducting spherical shells have radius $ r, 2r$ and $3r$ and $Q_1, Q_2$ and $Q_3$ are final charges respectively. Innermost and outermost shells are already earthed as shown in figure. Choose the wrong statement.
Assertion : A metallic shield in form of a hollow shell may be built to block an electric field.
Reason : In a hollow spherical shield, the electric field inside it is zero at every point.