Two conducting spheres of radii $5\, cm$ and $10\, cm$ are given a charge of $15\,\mu C$ each. After the two spheres are joined by a conducting wire, the charge on the smaller sphere is.......$\mu C$
$5$
$10$
$15$
$20$
A non uniformly shaped conductor is charged then at it's sharpest point
A spherical conducting shell of inner radius $r_1$ and outer radius $r_2$ has a charge $Q. $
$(a)$ A charge $q$ is placed at the centre of the shell. What is the surface charge density on the inner and outer surfaces of the shell?
$(b)$ Is the electric field inside a cavity (with no charge) zero, even if the shell is not spherical, but has any irregular shape? Explain.
Sixty four conducting drops each of radius $0.02 m$ and each carrying a charge of $5 \,\mu C$ are combined to form a bigger drop. The ratio of surface density of bigger drop to the smaller drop will be ............
The magnitude of electric field on the surface of a uniformly charged metalic spherical shell is $E$. If a hole is made in it using a insulating device, then the magnitude of electric field in the hole will be
Three concentric metallic spherical shells of radii $R, 2R, 3R$, are given charges $Q_1, Q_2, Q_3$, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, $Q_1 : Q_2 : Q_3$ is