A skylab of mass $m\,kg$ is first launched from the surface of the earth in a circular orbit of radius $2R$ (from the centre of the earth) and then it is shifted from this circular orbit to another circular orbit of radius $3R$ . The minimum energy required to shift the lab from first orbit to the second orbit are

  • A

    $\frac {mgR}{6}$

  • B

    $\frac {mgR}{12}$

  • C

    ${mgR}$

  • D

    ${mgR}$

Similar Questions

Suppose the gravitational force varies inversely as the $n^{th}$ power of the distance. Then, the time period of a planet in circular orbit of radius $R$ around the sun will be proportional to

Two stars of masses $m_1$ and $m_2$ are parts of a binary star system. The radii of their orbits are $r_1$ and $r_2$ respectively, measured from the centre of mass of the system. The magnitude of gravitational force $m_1$ exerts on $m_2$ is

A body of mass $m$ is lifted up from the surface of the earth to a height three times the radius of the earth. The change in potential energy of the body is

where $g$ is acceleration due to gravity at the surface of earth.

A clock $S$ is based on oscillation of a spring and a clock $P$ is based on pendulum motion. Both clocks run at the same rate on earth. On a planet having the same density as earth but twice the radius

A body of mass  $m$  falls from a height  $R$  above the surface of the earth, where $R$  is the radius of the earth. What is the velocity attained by the body on reaching the ground? (Acceleration due to gravity on the surface of the earth is $g$ )