A public park, in the form of a square, has an area of $(100 \pm 0.2)\; m ^2$. The side of park is ............ $m$
$(10 \pm 0.01)$
$(10 \pm 0.1)$
$(10 \pm 0.02)$
$(10 \pm 0.2)$
Three students $S_{1}, S_{2}$ and $S_{3}$ perform an experiment for determining the acceleration due to gravity $(g)$ using a simple pendulum. They use different lengths of pendulum and record time for different number of oscillations. The observations are as shown in the table.
Student No. | Length of pendulum $(cm)$ | No. of oscillations $(n)$ | Total time for oscillations | Time period $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(Least count of length $=0.1 \,{m}$, least count for time $=0.1\, {s}$ )
If $E_{1}, E_{2}$ and $E_{3}$ are the percentage errors in $'g'$ for students $1,2$ and $3$ respectively, then the minimum percentage error is obtained by student no. ....... .
In an experiment to find acceleration due to gravity $(g)$ using simple pendulum, time period of $0.5\,s$ is measured from time of $100$ oscillation with a watch of $1\;s$ resolution. If measured value of length is $10\; cm$ known to $1\; mm$ accuracy. The accuracy in the determination of $g$ is found to be $x \%$. The value of $x$ is
The percentage error in the measurement of $g$ is $.....\%$ (Given that $g =\frac{4 \pi^2 L }{ T ^2}, L =(10 \pm 0.1)\,cm$, $T =(100 \pm 1)\,s )$
$Assertion$: In the measurement of physical quantities direct and indirect methods are used.
$Reason$ : The accuracy and precision of measuring instruments along with errors in measurements should be taken into account, while expressing the result.
We can reduce random errors by