A proton is accelerated through $50,000\, V$. Its energy will increase by
$5000 \,eV$
$8 \times {10^{ - 15}}\,J$
$5000 \,J$
$50,000\, J$
Consider a system of three charges $\frac{\mathrm{q}}{3}, \frac{\mathrm{q}}{3}$ and $-\frac{2 \mathrm{q}}{3}$ placed at points $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$, respectively, as shown in the figure,
Take $\mathrm{O}$ to be the centre of the circle of radius $\mathrm{R}$ and angle $\mathrm{CAB}=60^{\circ}$
Figure:$Image$
Figure shows a positively charged infinite wire. $A$ particle of charge $2C$ moves from point $A$ to $B$ with constant speed. (Given linear charge density on wire is $\lambda = 4 \pi \varepsilon_0$)
A particle of charge $q$ and mass $m$ is subjected to an electric field $E = E _{0}\left(1- ax ^{2}\right)$ in the $x-$direction, where $a$ and $E _{0}$ are constants. Initially the particle was at rest at $x=0 .$ Other than the initial position the kinetic energy of the particle becomes zero when the distance of the particle from the origin is
Why gravitational forces or spring forces are conservative forces ?
There is $10$ units of charge at the centre of a circle of radius $10\,m$. The work done in moving $1\, unit$ of charge around the circle once is...........$units$