A plan wave of sound traveling in air is incident upon a plan surface of a liquid. The angle of incidence is $60^o$. The speed of sound in air is $300\ m/s$ and in the liquid it is $600\ m/s$. Assume Snell's law to be valid for sound waves 

  • A

    The wave will refract into liquid away from normal

  • B

    The wave refract into liquid towards the normal

  • C

    The wave will reflect back into air

  • D

    none of these

Similar Questions

For a certain organ pipe three successive resonance frequencies are observed at $425\, Hz,$ $595\,Hz$ and $765\,Hz$ respectively. If the speed of sound in air is $340\,m/s,$ then the length of the pipe is ..... $m$

A uniform string suspended vertically. A transverse pulse is created at the top most of the string. Then

A string of mass $100\, gm$ is clamped between two rigid support. A wave of amptitude $2\, mm$ is generated in string. If angular frequency of wave is $5000\, rad/s$ then total energy of the wave in string is ..... $J$

A point source emits sound equally in all directions in a non-absorbing medium. Two points $P$ and $Q$ are at a distance of $9$ meters and $25$ meters respectively from the source. The ratio of the amplitudes of the waves at $P$ and $Q$ is

A string of mass $2.5\, kg$ under some tension. The length of the stretched string is $20\, m$. If the transverse jerk produced at one end of the string takes $0.5\, s$ to reach the  other end, tension in the string is .... $N$