A uniform string suspended vertically. A transverse pulse is created at the top most of the string. Then
speed of pulse remains constant
the speed of the pulse decreases with constant rate as pulse moves downward.
the speed of the pulse decreases with increasing rate as pulse moves downward
the speed of the pulse increases with constant rate as pulse moves downward
A transverse wave in a medium is described by the equation $y = A \sin^2 \,(\omega t -kx)$. The magnitude of the maximum velocity of particles in the medium will be equal to that of the wave velocity, if the value of $A$ is ($\lambda$ = wavelngth of wave)
A whistle ' $S$ ' of frequency $f$ revolves in a circle of radius $R$ at a constant speed $v$. What is the ratio of maximum and minimum frequency detected by a detector $D$ at rest at a distance $2 R$ from the center of circle as shown in figure? (take ' $c$ ' as speed of sound)
Equation of a plane progressive wave is given by $y = 0.6\, \sin 2\pi \left( {t - \frac{x}{2}} \right)$.On reflection from a denser medium its amplitude becomes $2/3$ of the amplitude of the incident wave. The equation of the reflected wave is :-
A stretched string is divided into three segments of lengths $50\,cm,\,\,40\,cm$ and $10\,cm$ with the help of bridges. Their vibrations will have frequencies in the ratio
A man is watching two trains, one leaving and the other coming with equal speed of $4\,m/s$ . If they sound their whistles each of frequency $240\, Hz$ , the number of beats per sec heard by man will be equal to: (velocity of sound in air $= 320\, m/s$ )