A particle with charge $q$, moving with a momentum $p$, enters a uniform magnetic field normally. The magnetic field has magnitude $B$ and is confined to a region of width $d$, where $d < \frac{p}{{Bq}}$, The particle is deflected by an angle $\theta $ in crossing the field
$\sin \theta = \frac{{Bqd}}{p}$
$\sin \,\theta \, = \frac{p}{{Bqd}}$
$\sin \,\theta \, = \frac{{Bp}}{{qd}}$
$\sin \,\theta \, = \frac{{pd}}{{Bq}}$
At $t$ = $0$, a positively charged particle of mass $m$ is projected from the origin with velocity $u_0$ at an angle $37^o $ from the $x-$axis as shown in the figure. A constant magnetic field ${\vec B_0} = {B_0}\hat j$ is present in space. After a time interval $t_0$ velocity of particle may be:-
A particle is moving in a uniform magnetic field, then
A charge particle of $2\,\mu\,C$ accelerated by a potential difference of $100\,V$ enters a region of uniform magnetic field of magnitude $4\,m\,T$ at right angle to the direction of field. The charge particle completes semicircle of radius $3\,cm$ inside magnetic field. The mass of the charge particle is $........\times 10^{-18}\,kg$.
An electron moves straight inside a charged parallel plate capacitor of uniform charge density. The space between the plates is filled with uniform magnetic field of intensity $B ,$ as shown in the figure, Neglecting effect of gravity, the time of straight line motion of the electron in the capacitor is
An electron beam passes through a magnetic field of $2 \times 10^{-3}\,Wb/m^2$ and an electric field of $1.0 \times 10^4\,V/m$ both acting simultaneously. The path of electron remains undeviated. The speed of electron if the electric field is removed, and the radius of electron path will be respectively