A particle projected from origin moves in $x-y$ plane with a velocity $\vec{v}=3 \hat{i}+6 x \hat{j}$, where $\hat{i}$ and $\hat{j}$ are the unit vectors along $x$ and $y$ axis. Find the equation of path followed by the particle

  • A

    $y=x^2$

  • B

    $y=\frac{1}{x^2}$

  • C

    $y=2 x^2$

  • D

    $y=\frac{1}{x}$

Similar Questions

A boy is moving with a constant speed $v$ on a small trolley towards a distant circle as shown in the figure. A point mass is moving on the circle with a constant speed $v$, what is the frequency of change in magnitude of relative velocity of the point mass, as observed by the boy.

A body of mass $1 \,\, kg$ is acted upon by a force $\vec F = 2\sin 3\pi t\,\hat i + 3\cos 3\pi t\,\hat j$ find its position at $t = 1 \,\, sec$ if at $t = 0$ it is at rest at origin. 

A person moves $30\, m$ north and then $20\, m$ towards east and finally $30\sqrt 2 \,m$  in south-west direction. The displacement of the person from the origin will be

A vector has both magnitude and direction. Does it mean that anything that has magnitude and direction is necessarily a vector? The rotation of a body can be specified by the direction of the axis of rotation, and the angle of rotation about the axis. Does that make any rotation a vector?

A river is flowing due east with a speed $3\, ms^{-1}$. A swimmer can swim in still water at a speed of $4\, ms^{-1}$ (figure).

$(a)$ If swimmer starts swimming due north, what will be his resultant velocity (magnitude and direction) ?

$(b)$ If he wants to start from point A on south bank and reach opposite point $B$ on north bank,

       $(i)$ Which direction should he swim ?
       $(ii)$ What will be his resultant speed ?

$(c)$ From two different cases as mentioned in $(a)$ and $(b)$ above, in which case will he reach opposite bank in shorter time ?