A metallic sphere has a charge of $10\,\mu C$. A unit negative charge is brought from $A$ to $B$ both $100\,cm$ away from the sphere but $A$ being east of it while $B$ being on west. The net work done is........$joule$
$0$
$2/10$
$ - 2/10$
$ - 1/10$
Charges $-q,\, q,\,q$ are placed at the vertices $A$, $B$, $C$ respectively of an equilateral triangle of side $'a'$ as shown in the figure. If charge $-q$ is released keeping remaining two charges fixed, then the kinetic energy of charge $(-q)$ at the instant when it passes through the mid point $M$ of side $BC$ is
An electron of mass $m$ and charge $e$ is accelerated from rest through a potential difference $V$ in vacuum. The final speed of the electron will be
In the figure the charge $Q$ is at the centre of the circle. Work done is maximum when another charge is taken from point $P$ to
In a region of space, suppose there exists a uniform electric field $\vec{E}=10 i\left(\frac{ v }{ m }\right)$. If a positive charge moves with a velocity $\vec{v}=-2 \hat{j}$, its potential energy
An elementary particle of mass $m$ and charge $ + e$ is projected with velocity $v$ at a much more massive particle of charge $Ze,$ where $Z > 0.$What is the closest possible approach of the incident particle