A metallic shell has a point charge ‘$q$’ kept inside its cavity. Which one of the following diagrams correctly represents the electric lines of forces
An electric dipole is put in north-south direction in a sphere filled with water. Which statement is correct
Careful measurement of the electric field at the surface of a black box indicates that the net outward flux through the surface of the box is $8.0 \times 10^{3} \;Nm ^{2} / C .$
$(a)$ What is the net charge inside the box?
$(b)$ If the net outward flux through the surface of the box were zero, could you conclude that there were no charges inside the box? Why or Why not?
Give reason : ''If net flux assocaited with closed surface is zero, then net charge enclosed by that surface is zero''.
In $1959$ Lyttleton and Bondi suggested that the expansion of the Universe could be explained if matter carried a net charge. Suppose that the Universe is made up of hydrogen atoms with a number density $N$, which is maintained a constant. Let the charge on the proton be :
${e_p}{\rm{ }} = - {\rm{ }}\left( {1{\rm{ }} + {\rm{ }}y} \right)e$ where $\mathrm{e}$ is the electronic charge.
$(a)$ Find the critical value of $y$ such that expansion may start.
$(b)$ Show that the velocity of expansion is proportional to the distance from the centre.
The wrong statement about electric lines of force is