A mass of $0.2\,kg$ is attached to the lower end of a massless spring of force-constant $200\, N/m,$ the upper end of which is fixed to a rigid support. Which of the following statements is/are true ?
In equilibrium, the spring will be stretched by $1\,cm.$
If the mass is raised till the spring is unstretched state and then released, it will go down by $2\,cm$ before moving upwards.
The frequency of oscillation will be nearly $5\, Hz.$
all of the above
A mass of $2.0\, kg$ is put on a flat pan attached to a vertical spring fixed on the ground as shown in the figure. The mass of the spring and the pan is negligible. When pressed slightly and released the mass executes a simple harmonic motion. The spring constant is $200\, N/m.$ What should be the minimum amplitude of the motion so that the mass gets detached from the pan (take $g = 10 m/s^2$).
What provides the restoring force in the following cases ?
$(1)$ Compressed spring becomes force for oscillation.
$(2)$ Displacement of water in $U\,-$ tube,
$(3)$ Displacement of pendulum bob from mean position.
If a body of mass $0.98\, kg$ is made to oscillate on a spring of force constant $4.84\, N/m$, the angular frequency of the body is ..... $ rad/s$
In the situation as shown in figure time period of vertical oscillation of block for small displacements will be
Two springs with negligible masses and force constant of $K_1 = 200\, Nm^{-1}$ and $K_2 = 160\, Nm^{-1}$ are attached to the block of mass $m = 10\, kg$ as shown in the figure. Initially the block is at rest, at the equilibrium position in which both springs are neither stretched nor compressed. At time $t = 0,$ a sharp impulse of $50\, Ns$ is given to the block with a hammer.