A mass of $5\, {kg}$ is connected to a spring. The potential energy curve of the simple harmonic motion executed by the system is shown in the figure. A simple pendulum of length $4\, {m}$ has the same period of oscillation as the spring system. What is the value of acceleration due to gravity on the planet where these experiments are performed? (In ${m} / {s}^{2}$)

981-1096

  • [JEE MAIN 2021]
  • A

    $10$

  • B

    $5$

  • C

    $4$

  • D

    $9.8$

Similar Questions

For the damped oscillator shown in Figure the mass mof the block is $200\; g , k=90 \;N m ^{-1}$ and the damping constant $b$ is $40 \;g s ^{-1} .$ Calculate

$(a)$ the period of oscillation,

$(b)$ time taken for its amplitude of vibrations to drop to half of Its inittal value, and

$(c)$ the time taken for its mechanical energy to drop to half its initial value.

Two masses $m_1$ and $m_2$ are suspended together by a massless spring of constant $K$. When the masses are in equilibrium, $m_1$ is removed without disturbing the system. The amplitude of oscillations is

Find maximum amplitude for safe $SHM$ (block does not topple during $SHM$) of $a$ cubical block of side $'a'$ on a smooth horizontal floor as shown in figure (spring is massless)

Two springs with negligible masses and force constant of $K_1 = 200\, Nm^{-1}$ and $K_2 = 160\, Nm^{-1}$ are attached to the block of mass $m = 10\, kg$ as shown in the figure. Initially the block is at rest, at the equilibrium position in which both springs are neither stretched nor compressed. At time $t = 0,$ a sharp impulse of $50\, Ns$ is given to the block with a hammer.

A particle at the end of a spring executes simple harmonic motion with a period ${t_1}$, while the corresponding period for another spring is ${t_2}$. If the period of oscillation with the two springs in series is $T$, then

  • [AIEEE 2004]