A group consists of $4$ girls and $7$ boys. In how many ways can a team of $5$ members be selected if the team has at least one boy and one girl ?
since, at least one boy and one girl are to be there in every team. Therefore, the team can consist of
$(a)$ $1$ boy and $4$ girls
$(b)$ $2$ boys and $3$ girls
$(c)$ $3$ boys and $2$ girls
$(d)$ $4$ boys and $1$ girl.
$1$ boy and $4$ girls can be selected in $^{7} C _{1} \times^{4} C _{4}$ ways.
$2$ boys and $3$ girls can be selected in $^{7} C _{2} \times^{4} C _{3}$ ways.
$3$ boys and $2$ girls can be selected in $^{7} C _{3} \times^{4} C _{2}$ ways.
$4$ boys and $1$ girl can be selected in $^{7} C _{4} \times^{4} C _{1}$ ways.
Therefore, the required number of ways
$=\,^{7} C _{1} \times^{4} C _{4}+^{7} C _{2} \times^{4} C _{3}+^{7} C _{3} \times^{4} C _{2}+^{7} C _{4} \times^{4} C _{1}$
$=7+84+210+140=441$
If $^n{C_r} = {\,^n}{C_{r - 1}}$ and $^n{P_r}{ = ^n}{P_{r + 1}}$, then the value of $n$ is
The number of ways of dividing $52$ cards amongst four players equally, are
The value of $\sum\limits_{r = 1}^{15} {{r^2}\,\left( {\frac{{^{15}{C_r}}}{{^{15}{C_{r - 1}}}}} \right)} $ is equal to
Six ‘$+$’ and four ‘$-$’ signs are to placed in a straight line so that no two ‘$-$’ signs come together, then the total number of ways are
Find the number of words with or without meaning which can be made using all the letters of the word $AGAIN$. If these words are written as in a dictionary, what will be the $50^{\text {th }}$ word?