A copper rod and a steel rod of equal cross-sections and lengths $(L)$ are joined side by side and connected between two heat baths as shown in the figure

If heat flows through them from $x = 0$ to $x = 2L$ at a steady rate and conductivities of the metals are $K_{cu}$ and $K_{steel}$ $(K_{cu} > K_{steel}),$ then the temperature varies as (convection and radiation are negligible)

827-643

  • A
    827-a643
  • B
    827-b643
  • C
    827-c643
  • D
    827-d643

Similar Questions

Three conducting rods of same material and cross-section are shown in figure. Temperatures of$ A, D$ and $C$ are maintained at $20^o C, 90^o C$ and $0^o C$. The ratio of lengths of $BD$ and $BC$ if there is no heat flow in $AB$ is:

$Assertion :$ Two thin blankets put together are warmer than a single blanket of double the thickness.
$Reason :$ Thickness increases because of air layer enclosed between the two blankets.

  • [AIIMS 2010]

The outer faces of a rectangular slab made of equal thickness of iron and brass are maintained at $100^{\circ} C$ and $0^{\circ} C$ respectively. The temperature at the interface is ........... $^{\circ} C$ (Thermal conductivity of iron and brass are $0.2$ and $0.3$ respectively.)

A brass boiler has a base area of $0.15\; m ^{2}$ and thickness $1.0\; cm .$ It boils water at the rate of $6.0\; kg / min$ when placed on a gas stove. Estimate the temperature (in $^oC$) of the part of the flame in contact with the boiler. Thermal conductivity of brass $=109 \;J s ^{-1} m ^{-1} K ^{-1} ;$ Heat of vaporisation of water $=2256 \times 10^{3}\; J kg ^{-1}$

The two ends of a metal rod are maintained at temperatures $100 ^o C$ and $110^o C$. The rate of heat flow in the rod is found to be $4.0\ J/s$. If the ends are maintained at temperatures $200^o\  C$ and $210^o\ C$, the rate of heat flow will be.... $J/s$

  • [AIPMT 2015]