एक धनावेशित चालक
सदैव धन विभव पर रहता है
सदैव शून्य विभव पर रहता है
सदैव ऋण विभव पर रहता है
धन विभव, शून्य विभव अथवा ऋण विभव पर हो सकता हैधनावेशित चालक धन, शून्य या ऋण विभव पर हो सकता है जो कि इस बात पर निर्भर करता है कि शून्य विभव को किस प्रकार परिभाषित किया गया है।
चाँदी (परमाणु संख्या = $47$) के नाभिक की त्रिज्या $3.4 \times {10^{ - 14}}\,m$ है। नाभिक की सतह पर विद्युत विभव होगा $(e = 1.6 \times {10^{ - 19}}\,C)$
$a, b$ एवं $c[a < b < c]$ त्रिज्याओं वाले तीन सकेन्द्रीय धात्विक कोशों $\mathrm{X}, \mathrm{Y}$ एवं $\mathrm{Z}$ पर पृष्ठ धारा घनत्व क्रमशः $\sigma,-\sigma$ एवं $\sigma$ है। कोशों $\mathrm{X}$ एवं $\mathrm{Z}$ पर विभव समान है। यदि कोशों $\mathrm{X}$ एवं $\mathrm{Y}$ की त्रिज्याऐं क्रमशः $2 \mathrm{~cm}$ एवं $3 \mathrm{~cm}$ हैं। कोश $Z$ की त्रिज्या_______________$\mathrm{cm}$ है।
दो अचालक $R_1$ तथा $R_2$ त्रिज्या वाले गोलों को क्रमशः $+\rho$ तथा $-\rho$ एकसमान आयतन आवेश घनत्व से आवेशित किया गया है। इन गोलों को चित्र में दर्शाए अनुसार इस प्रकार जोड़ कर रखा गया है कि वे आंशिक रूप से अतिछादित है। अतिछादित क्षेत्र के प्रत्येक बिन्दु पर -
$(A)$ स्थिर विधुत क्षेत्र शून्य है।
$(B)$ स्थिर विधुत विभव अचर है।
$(C)$ स्थिर विधुत क्षेत्र का परिमाण अचर है।
$(D)$ स्थिर विधुत क्षेत्र की दिशा एकसमान है।
$h$ ऊंचाई वाले निर्वातित (evacuated) एक बेलनाकार कक्ष के दोनों छोरों पर दो द्रढ़़ (rigid) चालक पट्टीकाएं हैं और उसका वक्रप्रष्ट अचालक है, जैसा की चित्र में दर्शाया गया है। कम भार वाली मुलायम पदार्थ से बनी हुयी कई गोलाकार गोलियाँ, जिनकी सतह पर एक चालक पदार्थ की परत चढ़ी है, नीचे वाली पट्टिका पर रखी हुई हैं। इन गोलियों की त्रिज्या $r \ll h$ है। अब एक उच्च वोल्टता का खोत $(HV)$ इस तरह से जोड़ा जाता है कि नीचे वाली पट्टिका पर $+V_0$ एवं ऊपर वाली पट्टिका पर $-V_0$ का विभव आ जाता है। चालक परत के कारण गोलियाँ आवेशित होकर पट्टिका के साथ समविभव हो जाती हैं जिसंके कोरण वे पट्टिका से प्रतिकर्षित होती हैं। अंततोगत्वा गोलियाँ ऊपरी पट्टिका से टकराती हैं, जहाँ पर गोलियों के पदार्थ की मुलायम प्रकृति के कारण प्रत्यवस्थान गुणांक (coefficient of restitution) को शून्य लिया जा सकता है। कक्ष में विद्युत क्षेत्र को समानान्तर पट्टिका वाले संधारित्र के समान माना जा सकता है। गोलियों की एक दूसरे से पारस्परिक क्रिया एवं टकराव को नगण्य माना जा सकता है। (गुरुत्वाकर्षण नगण्य है।)
निम्नलिखित में से कौनसा कथन सत्य है?
$(A)$ गोलियाँ ऊपरी पट्टिका पर चिपककर वहीं रह जाती हैं
$(B)$ गोलियाँ जिस आवेश के साथ ऊपर जाती हैं उसी आवेश के साथ उछल कर निचली पट्टिका पर वापस आ जाती हैं
$(C)$ गोलियाँ जिस्स आवेश के साथ ऊप्र जाती हैं उसके विपरीत आवेश के साथ उछलकर निचली पट्टिका पर वापूस आ जाती हैं
$(D)$ गोलियाँ दोनों पट्टिकाओं के बीच सरल आवर्त गति निष्पाद करेंगी
परिपथ में लगाए अमीटर में स्थायी अवस्था में औसत धारा
$(A)$ का मान शून्य होगा
($B$)$V_0$ के समानुपाती होगी
$(C)$ $V_0^{1 / 2}$ के समानुपाती होगी
$(D)$ $V_0^2$ के समानुपाती होगी
दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)
एक क्षेत्र में एकसमान स्थिर वैद्युत क्षेत्र उपस्थित है। यहाँ एक बिन्दु $P$ पर केन्द्रित एक गोले के विभिन्न बिन्दुओं पर विभव का मान $589.0 \;V$ व $589.8 \;V$ सीमाओं के बीच पाया जाता है। इस गोले के पृष्ठ पर वह बिन्दु, जिसका त्रिज्या वेक्टर विद्युत क्षेत्र से $60^{\circ}$ का कोण बनाता है, पर विभव का मान क्या होगा ?