A closely packed coil having $1000$ turns has an average radius of $62.8\,cm$. If current carried by the wire of the coil is $1\,A$, the value of magnetic field produced at the centre of the coil will be (permeability of free space $=4 \pi \times 10^{-7}\,H / m$ ) nearly
$10^{-1}\,T$
$10^{-2}\,T$
$10^{2}\,T$
$10^{-3}\,T$
A closely wound flat circular coil of $25$ $turns$ of wire has diameter of $10\, cm$ and carries a current of $4\, ampere$. Determine the flux density at the centre of a coil
A uniform wire is bent in the form of a circle of radius $R$. A current $I$ enters at $A$ and leaves at $C$ as shown in the figure :If the length $ABC$ is half of the length $ADC,$ the magnetic field at the centre $O$ will be
Give similarity between Biot-Savart law and electrostatic law of Coulomb.
Magnetic field intensity at the centre of coil of $50$ $turns$, radius $0.5\, m$ and carrying a current of $2\, A$ is
Two long straight wires are placed along $x$-axis and $y$-axis. They carry current $I_1$ and $I_2$ respectively. The equation of locus of zero magnetic induction in the magnetic field produced by them is