A bullet is dropped from the same height when another bullet is fired horizontally. They will hit the ground
One after the other
Simultaneously
Depends on the observer
None of the above
If T is the total time of flight, $h$ is the maximum height $ \& R$ is the range for horizontal motion, the $x$ and $y$ co-ordinates of projectile motion and time $t$ are related as
In a circus, a performer throws an apple towards a hoop held at $45 \,m$ height by another performer standing on a high platform (see figure). The thrower aims for the hoop and throws the apple with a speed of $24 \,m / s$. At the exact moment that the thrower releases the apple, the other performer drops the hoop. The hoop falls straight down. At ............ $m$ height above the ground does the apple go through the hoop?
Column $-I$ Angle of projection |
Column $-II$ |
$A.$ $\theta \, = \,{45^o}$ | $1.$ $\frac{{{K_h}}}{{{K_i}}} = \frac{1}{4}$ |
$B.$ $\theta \, = \,{60^o}$ | $2.$ $\frac{{g{T^2}}}{R} = 8$ |
$C.$ $\theta \, = \,{30^o}$ | $3.$ $\frac{R}{H} = 4\sqrt 3 $ |
$D.$ $\theta \, = \,{\tan ^{ - 1}}\,4$ | $4.$ $\frac{R}{H} = 4$ |
$K_i :$ initial kinetic energy
$K_h :$ kinetic energy at the highest point
In the motion of a projectile freely under gravity, its
Two projectiles are thrown simultaneously in the same plane from the same point. If their velocities are $v_1$ and $v_2$ at angles $\theta _1$ and $\theta_2$ respectively from the horizontal, then answer the following question
If $v_1\,\,sin\,\,\theta _1 = v_2\,\,sin\,\,\theta _2$, then choose the incorrect statement