A bomb of mass $9\, kg$ explodes into two pieces of masses $3\, kg$ and $6\, kg$. The velocity of mass $3\, kg$ is $16\, m/s$. The $KE$ of mass $6\, kg$ (in joule) is

  • A

    $96$

  • B

    $384$

  • C

    $192$

  • D

    $768$

Similar Questions

A force acts on a $3\, gm$ particle in such a way that the position of the particle as a function of time is given by $x = 3t -4t^2 + t^3$, where $x$ is in $meters$ and $t$ is in $seconds$ . The work done during the first $4\, second$ is .............. $\mathrm{mJ}$

Ball $A$ moving at $12\ m/s$ collides elastically with $B$ at rest as shown. If both balls have the same mass, what is the final velocity of ball $A$ ? .................. $m/s$

$A$ ball is projected from ground with a velocity $V$ at an angle $\theta$ to the vertical. On its path it makes an elastic collison with $a$ vertical wall and returns to ground. The total time of flight of the ball is 

A force of $\left( {2\widehat i + 3\widehat j + 4\widehat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\widehat i + 4\widehat j + 5\widehat k} \right)\,m$. The power used is :- ............... $\mathrm{W}$

A basket and its contents have mass $M$. A monkey of mass $2M$ grabs the other end of the rope and very quickly (almost instantaneously) accelerates by pulling hard on the rope until he is moving with a constant speed of $v_{m/r} = 2ft/s$ measured relative to the rope. The monkey then continues climbing at this constant rate relative to the rope for $3$ seconds. How fast is the basket rising at the end of the $3$ seconds? Neglect the mass of the pulley and the rope. (given : $g = 32ft/s^2$)