A body of mass $m$ is situated at a distance equal to $2R$ ($R-$ radius of earth) from earth's surface. The minimum energy required to be given to the body so that it may escape out of earth's gravitational field will be
$mgR$
$\frac{mgR}{3}$
$\frac{mgR}{2}$
$\frac{mgR}{4}$
In order to shift a body of mass $m$ from a circular orbit of radius $3R$ to a higher radius $5R$ around the earth, the work done is
The change in the value of $‘g’$ at a height $‘h’$ above the surface of the earth is the same as at a depth $‘d’$ below the surface of earth. When both $‘d’$ and $‘h’$ are much smaller than the radius of earth, then which one of the following is correct?
If potential energy of a body of mass $m$ on the surface of earth is taken as zero then its potential energy at height $h$ above the surface of earth is [ $R$ is radius of earth and $M$ is mass of earth]
The two planets have radii $r_1$ and $r_2$ and their densities $p_1$ and $p_2$ respectively. The ratio of acceleration due to gravity on them will be
Suppose, the acceleration due to gravity at the Earth's surface is $10\, m\, s^{-2}$ and at the surface of Mars it is $4.0\, m\, s^{-2}$. A $60\, kg$ pasenger goes from the Earth to the Mars in a spaceship moving with a constant velocity. Neglect all other objects in the sky. Which part of figure best represents the weight (net gravitational force) of the passenger as a function of time?